TWO DIMENSIONAL ENCODING (CONT'D)

Step 1 vertical mode V(0).

		b1		b2																				
	0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
	0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
a0		a1																						

Step 2 vertical mode $V_L(1)$.

			b1				b2																
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
	a0	a1																					

Step 3 pass mode.

					b1		b2																
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
		a0							a1														

TWO DIMENSIONAL ENCODING (CONT'D)

Step 4 vertical mode $V_L(1)$.

										b1		b2											
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
							a0		a1														

Step 5 vertical mode V(0).

												b1							b2				
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
									a0			a1											

TWO DIMENSIONAL ENCODING (CONT'D)

Step 6 horizontal mode white run of 3 and black run of 4

																				b1				b2
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0	
												a0			a1				a2					

Step 7 horizontal mode white run of 5 and a black run of 0.

																				b1				b2
0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	
0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0	
																			a0					a1

a2

COMPRESSION

JPEG

MIL-STD-188-198A

- •DCT LOSSY
 - •8-BIT
 - •12-BIT
- •LOSSLESS
- •DOWNSAMPLE JPEG

DCT - BASED ENCODER JPEG

IDCT - BASED DECODER JPEG

COMPARISON

PREPARATION OF QUANTIZED COEFFICIENTS FOR ENTROPY ENCODING

Differential DC Encoding

ZIG-ZAG ORDER

LOSSLESS ENCODER

JPEG COMPRESSED NITF MULTIPLE BLOCK FILE STRUCTURE (IMODE B OR P)

SOI: Start of Image

EOI: End of Image

JPEG COMPRESSED NITF MULTIPLE BLOCK FILE STRUCTURE IMODE S

DOWNSAMPLE JPEG

Source Image Data

Downsampling Ratio =
$$\frac{\mathbf{r} \times \mathbf{c}}{\mathbf{r}_1 \times \mathbf{c}_1}$$

PRE/POST-PROCESSING

REMAPPING FUNCTION

$$P_1 = P_0 - P_{\min}$$

$$P_2 = P_1 \times 2^{S_1}$$

$$P_3 = F_{remap(0, 1, 2, 3)}(P_2)$$

$$(P_2 = P_1 LSL(S_1))$$

Remap methods 0, 1, 2 & 3

LSL = Logical Shift Left

REMAP METHODS

0 - No change, unity function. $P_3=P_2$

1 - Look-up Table,

2 - Logarithmic function, $P_3 = e^{f(P_2)}$

3 - Polynomial function (up to 5th order), $P_3 = b_0 + b_1 P_2 + b_2 P_2^2 + b_3 P_2^3 + b_4 P_2^4 + b_5 P_2^5$

PRE/POST PROCESSING

COMPRESSION

VQ MIL-STD-188-199

VQ NITF FILE STRUCTURE

F File ader	Images	s (Graphics	Tex		Data Extension Segments	Exte	erved ension ments		
nage header	Image		Image ibheader	Imag	ge	Image Subheader	Ima	age		
	,			ı						
	Mask osection	VQ) Header		Compi Image	essed Data				
	First Roomage Coo (Block (des	Second Image (Block	Codes	• • •	Last Ro Image Co (Block (des	Ima	rst Row ge Codes lock 1)	• •

VQ COMPRESSION PROCESS FLOW

DECOMPRESSION PROCESS FLOW

VQ SPATIAL DECOMPRESSION

COMPRESSION

ARIDPCM MIL-STD-188-197A

FORMAT OF A NITF 1.1 FILE (ARIDPCM)

ARIDPCM - BASED ENCODER

ARIDPCM - BASED DECODER

COMPRESSION

JPEG 2000 ISO/IEC 15444

JPEG2000 Standard Status

- The standard only specifies a decoder and a bitstream syntax and is issued in several parts:
 - Part I: Specifies the minimum compliant decoder (a decoder that is expected to satisfy 80% of applications);
 International Standard (IS) has been approved 1/3/01.
 Document available on Web (FCD version).
 - Part II: Describes optional, value added extensions; IS is expected in 12/2001 (delayed because of lack of work from international countries).
 - Other parts include: Motion JPEG2000 (Part III, CD 3/01); Conformance Testing (Part IV, CD 3/01);
 reference software in JAVA and C (Part V, FCD 3/01);
 file format for compound images (Part VI, CD 6/01).

J2K Standard Status (cont.)

JPEG 2000 Part 2 Extensions

- Multiple component compression
- Only a few people interested in the multiple component compression
- Very limited budgets and very few customer support
- No commercial interest
- Near completion but needs to be finalized and tested
- About 1 year more of work and meetings

JPEG 2000 Part 4 Compliance testing

- Critical that the compliance testing and levels are defined to establish the interoperability between commercial implementations (and NITFS)
- NITFS testing is easier if the commercial testing and levels support USIGS requirements
- About 1½ years left before completion of the standard

J2K Standard Status (cont.)

JPEG 2000 Part 3 Motion imagery

- USIGS is not involved in the standard
- Motion is focused on sequence collection for digital cameras
- Is being evaluated for applications in Digital Cinema
- Would be useful in aerial motion imagery
 - Better quality and less complexity

• JPEG 2000 Part 5 Example software

- Editor was replaced because of issues
- Currently at FCD (not available)
- Several people evaluating the software
- This part is very important for commercial acceptance
- The Independent JPEG Group (IJG) and the software that they produced was the main reason why JPEG is so successful
 - IJG is the basis of most commercial packages

Old Compression Paradigm (JPEG Baseline)

Encoder choices

color space quantization entropy coder pre-processing

No decoder choices

only one image post-processing

NEW COMPRESSION PARADIGM

SNR SCALABILITY EXAMPLE

All images have been decompressed from the same bit-stream

RESOLUTION PROGRESSIVE EXAMPLE

All images have been decompressed from the same bit stream. The wavelet decomposition provides a natural resolution hierarchy.

REGION OF INTEREST (ROI) EXAMPLE

ROI has bit rate of 2.0 bpp

Rest of image has bit rate of 0.0625 bpp

Bit rate for entire image is 0.12 bpp

Original 1024-by-1024

Wavelet Pyramid decomposition

Embedded Bit Stream Example

Compress to a very high quality (rate). Then, any quality (rate) less than that can be obtained by truncating compressed bit stream.

COMPRESSION - FUTURE

MULTI-SPECTRAL - Correlated
HYPER-SPECTRAL
ELEVATION DATA
COMPLEX DATA

ANNOTATIONS

- Graphics/Symbols
 - CGM
 - Bit-Mapped (Legacy)
- Labels (Legacy)
- Text
- Audio (Future)
- Motion Imagery (Future)